Journal of Computational Physi&é§0,549-560 (1999) ®
]
Article ID jcph.1999.6206, available online at http://www.idealibrary.conl DE &l.

The Three Dimensional Non-conforming
Finite Element Solution of the
Chapman-Ferraro Problem

Petr Klowcek*-1 and Frank R. Toffolettp?

*Department of Computational and Applied Mathematics, Rice University, 6100 Main Street, Houston,
Texas 77005tDepartment of Space Physics and Astronomy, Rice University,
6100 Main Street, Houston, Texas 77005
E-mail: kloucek@rice.edu, toffo@rice.edu

Received May 21, 1998; revised November 20, 1998

We demonstrate the feasibility of using a non-conforming, piecewise harmonic
finite element method on an unstructured grid in solving a magnetospheric physics
problem. We use this approach to construct a global discrete model of the magnetic
field of the magnetosphere that includes the effects of shielding currents at the outer
boundary (the magnetopause). As in the approach of F. R. Toffaetb (1994,
Geophys. Res. Let21, 7) the internal magnetospheric field model is that of R. V.
Hilmer and G.-H. Voigt (1995). Geophys. Reéswhile the magnetopause shape is
based on an empirically determined approximation (1997, J. 8tale J. Geophys.
Res.102 9497). The results is amagnetic field model whose field lines are completely
confined within the magnetosphere. The presented numerical results indicate that the
discrete non-conforming finite element model is well-suited for magnetospheric field
modeling. © 1999 Academic Press

Key Words: magnetopause; magnetosphere; Chapman—Ferraro currents; non-
conforming finite elements; Laplace’s equation; Neumann boundary value problem.

1. INTRODUCTION

The Earth’s magnetosphere is formed by the interaction of the solar wind with the Eart
magnetic field. This interaction, to zeroth-order, causes the solar wind to flow around
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cavity carved out by the Earth’s magnetic field forming the region known as the mag!
tosphere. The magnetospheric shape is compressed on the upstream or sunward sic
stretched out to form a long tail in the downstream region. This solar-wind magnetospt
interaction produces currents both within the magnetosphere and at the boundary (the |
netopause). The magnetopause currents, often called the Chapman—Ferraro current
confine the magnetospheric magnetic field lines within the magnetosphere in the ideal
case of a closed magnetosphere considered here.

Let @ be a three dimensional domain representing the Earth’s magnetospfiettee
boundary,0Qvp the magnetopause, ardd2ta be the downstream boundary (so that
02 =0Qup + 0Q271aL). We define the internal source magnetic fig for any x € Q
to include (1) the magnetic field of Earth’s dipole moment, (2) the tail field generated
currents flowing in the Earth’s tail, and (3) the ring current field which is generated by
region of trapped plasma in the near-Earth region. Note that the methods outlined here
general enough to be applicable to any magnetic field model. The Chapman—Ferraro
Bcr results from the shielding Chapman—Ferraro current at the magnetap@useThe
total normal component at the magnetopause for a closed magnetosphere is then

(Bs(X) + Bcr(x)) -n=0, X € 9Qup, (1.1)

wheren is the outward unit vector normal to the magnetopad@gp. (Details of the
Hilmer—\oigt magnetic field moddBs can be found in [5].) By definition, the Chapman—
Ferraro fieldBcr is curl-free in€2, thus it can be computed as the negative gradient of
scalar potentiap

Br¥) ¥ _vo(x), xeq. (1.2)

Since the magnetic fielB¢r is also required to be divergence-free, we have
Ad(x) =0, X € Q. (1.3)

The solution of Eq. (1.3) subject to the boundary condition (1.1) is called the Chapme
Ferraro problem [3]. A general discussion of this problem and a review of early work c
be found in [23, 13].

A perturbation of this shielding process occurs when there is a small but finite norn
component of the magnetic field at the magnetopause [17, 18]. The method we present
is applicable to an arbitrary magnetopause boundary condition and is readily adapte
the open magnetosphere modeling approach introduced in [17]. The open magnetosy
is modeled by replacing (1.1) with a non-homogeneous Neumann boundary condition.

If the magnetopause coincides with one of the coordinate surfaces (e.g., sphere)
system in which Laplace’s equation is separable [11], themay be expanded in har-
monic functions of that system and the coefficients may be derived by an inversion integ
Examples include spherical coordinates with a spherical magnetopause [24], parabolic
ordinates with a paraboloid-of-revolution magnetopause [1, 15], elliptic coordinates with
ellipsoidal magnetopause [20], and a combination of spherical and cylindrical coordine
with a hemi-spherical dayside magnetopause joined to a semi-infinite cylinder tail mag
topause [22, 24]. While these approaches have provided elegant and useful magnetic
models, the restrictions imposed by the technique limit the class of magnetopause sh
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that can be considered. For example, the magnetopause shape that results from a ma
hydrodynamic (mhd) pressure-balance calculation, where the shocked solar-wind pres
is balanced against the internal magnetic-field pressure, does not generally coincide
any of the shapes for which a separable solution to (1.3) can be found.

An alternative approach for non-separable solutions of (1.3) has been implemente
[16]. The coefficients are fitted to the boundary condition by least squares [16, 21].
finite difference method has been used in [19] using a curvilinear grid but the techniqu
restricted to axis-symmetric magnetopause shapes.

The next section describes in detail the technique for solving the Chapman—Ferraro p
lem using non-conforming finite elements and includes a description of the non-conform
formulation.

2. THE FINITE ELEMENT SOLUTION OF THE CHAPMAN-FERRARO PROBLEM

2.1. Magnetopause Shape Approximation

We have taken the Earth’s magnetospher® have the boundary given by the function
used in [14]. We approximate the magnetopadReby the function

2 B
Rwp = RO(].—I—COS(O()) s (2.1)
whereR; is a standoff distance, aads an angle such that= 0 corresponds to the location
(X, ¥, 2) = (Ro, 0, 0) (cf. Fig. 1). The parametegt determines the downstream flaring angle
of the magnetopause; for simplicity a valueff 0.5 is used.

The three-dimensional magnetospheric cavity is generated by a rotation abetexttse
to produce an axisymmetric magnetopause. Non-axisymmetric magnetopause shape
modeled by making the magnetotail radiggp a function of the angle. For the Earth’s

FIG.1. The geometry and the coordinate system used in this work wheoits towards the sun. The angle
¢ is the cylindrical coordinate out of the— z plane. In this coordinate system, the Earth’s dipole field tilts in the
x — z plane at an angle. The tail boundary is labele@a .
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magnetospherdy, varies between 8-12 Earth radR¢) although during extreme solar
wind conditions it can become as small &84 For the cases presented here, a constat
value of 1(Rg was used.

2.2. The Non-conforming Finite Element Formulation

The definition of a finite element consists of the triplet: (1) the geom®try(2) the
polynomial spacéP, and (3) the degrees of freedony all of these components are de-
scribed in more detail below. The finite element approximation of the potehtil the
Chapman—Ferraro magnetic fielB¢r is based on the spatially averaged non-conformin
finite element introduced in [12]. (By definition, conforming finite element spaces co
sists of a set of functions that are globally continuous while non-conforming finite eleme
spaces contain also discontinuous functions.) This approximation has been extensively
in [6] to approximate almost everywhere discontinuous deformations associated with
Martensitic transformation. The detailed numerical analysis of a generalization of this fir
element has been given in [8].

Let Q2 be a bounded domain with Lipschitz boundary and let us assume that the neces
compatibility condition for the interior Neumann problem is satisfied, i.e.,

/ Bs-ndS=0, (2.2)
aQ

as well as

/ Ber-ndS=0. (2.3)
Q2

We use the following formulation to solve the Laplace’s equation (1.1) coupled with tl
Neumann boundary condition (1.1) using finite elements. The funebieW'2(Q) is
called theweak solution of the Chapman—Ferraro probl€in3) with the homogeneous
Neumann boundary conditida.1) if

/Vd)(x)Vv(x)dx:/ Bs-nvdS  foranyv € WH3(Q), (2.4)
Q Q2

wherew2(Q) &' (y: Jo V(012 + [v(X)]?dx < oo}. It is well known that the interior
Neumann problem (2.4) has at most one solution and that the solution is determinec
to an arbitrary additive constant. The solution can be singled out by assuming any of
conditions|,, u(x) dx=0or [, udS=0 or by fixing the solutiorb at some point 01 <.

The application of a non-conforming finite element method is often desirable wh
the approximated functions or their derivatives are discontinuous or if the approxima
functions contain singularities. A priori this approach does not guarantee that the disc
functions would be continuous. The lack of continuity allows a precise approximation
discontinuities and variations that can be concentrated on a very small part of the con
tational domain. Another advantage of this approach is in the point-wise compliance w
various (additional) differential requirements such as the divergence-free condition or Ic
harmonicity.
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FIG. 2. Anillustration of computational domaif2,. The left figure highlights the tail of the domain that
shows imbedded cubé3,,. In this figure, each particular eleme@¥, is shrunk by about 30% to illustrate the
partitionz,.

In order to implement the non-conforming finite element method we partition the col
putational domairf2,, into quadrilateral®Qy, such that

Q, & U Qh. (2.5)

Qnem

The setr, contains all the elements used to reconstruct the dorfiginin particular,
we assume that the boundary of the computational domain is piecewise linear. Figu
shows the computational domain where each element has been shrunk by 30% to illus
the partitionzy,.

Theaveraged harmonifinite element we used in our calculations [12, 8] is a polynomia
from the finite dimensional space

P = Sparl, x,y, z, x? — y?, x? — 7% (2.6)
when restricted t&®Qy, € tn. We note that
—divVp(x,y,z) =0, foranyp € P and(x, Yy, 2) € Q. 2.7)

Hence the gradients of these polynomials are divergence-free in every quadriiateral.
We approximate the potentidl by the discrete potentiab, that is computed by

[\
On(X, Y, 2 =y aivi(X,y,2), forany(x,y,2)€Qn Qnem.  (2.8)
i=1

The functionsy; in (2.8) are polynomials from the polynomial space (2.6) when restricte
to any elemen@y,. The values at different points of the computational donsajrof these
functions are connected by thgeraged weak continuigondition

/Uh|Q%dS:/Uh|QﬁdS for any faceF = QN AQL # ¥, Qf, Qp € th- (2.9)
F F
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We note that this is the weakest condition possible to ensure that a change at one poi
@, will effect any other value of a functiony. Namely, without any additional continuity
condition of the type (2.9) we would not be able to implement the boundary conditions.

The possible discontinuity of the approximate potential does not allow us to use the s
dard gradient operatdf. We have to extend this operator on a larger class of discontinuo
functions. The extensioWy is defined with respect to the partitiap by

Vh®n(X, Y, 2) = VOr(X, Y, 2) for(x,y, 2) € Qn. (2.10)

Thus the extended gradient operator agrees with the standard definition inside any elel
Qn. Thediscrete gradient operatovy, is defined using one-sided limits on the boundary
of Qn and it ignores the effect of discontinuities alon@y,.

The non-conforming finite element formulation of (2.4) reddsdo; € R,i =1,2, ...,
Nh, such that

Nnh  Np
ZZai/ Vvi(x,y,z)Vvk(x,y,Z)dX=/ Bs-nudS
Qj 9

i=1 j=1 $2n
foranyk=1,2,..., N,. (2.11)

All operations involving integrals of various quantities are done on a parent finite elem
which in this case is a unit cube. The partiti@Qa is mapped onto the unit cube (using tri-
linear mapping) and all integrals are done using substitution. Biadtas a fixed number of
degrees of freedom (DOF) and polynomial spRaessociated with it. The mapping process
does not guarantee that these quantities are preserved [4]. In our case, since the DOF &
integrals over the faces @}y, this quantity is preserved but the polynomial space is not. |
other words, the mapping required to map the unit cube onto any of the ele@gats,
does not preserve the polynomial sp&e which we are approximating the potentibl

By computing appropriate scaling factof8can be preserved. However, calculations with
and without these scaling factors showed similar results which suggests that this deficie
does not introduce an additional error beyond@hé&) precision associated with the non-
conformity of the approximation.

2.3. Boundary Conditions

As mentioned in the Introduction the boundary of the computational dofh&nlivided
into two parts:9Qyp andd Q1 . The applied Neumann boundary condition, as require
to satisfy (2.3), is

Bcr(X) - n = —Bg(X), for x € 9Qump (212)

while on the tailward boundaryd Q21aL) we make the simplifying assumption that the
normal componentBra ) on d Qs IS constant and is defined by

faQMP Bs~ ndS

=M _ X € 0Q27AIL 2.13
Measd ) TAIL ( )

Ber(X) - N = Braw =

where mea@®Q1aiL) is the cross-sectional area of the regisRra. . The formula (2.13)
ensures that (2.3) is satisfied.



SOLUTION OF THE CHAPMAN-FERRARO PROBLEM 555

3. RESULTS

3.1. Calculations with Zero Tilt

Computation of the magnetic field with zero tilt (i.e., when the source magnetic fie
Bs points in the directior{0, 0, —1)) constitutes a mathematically and physically simplel
problem. In this casefaQMP Bs - ndS=0 so that Eq. (2.13) results in the simple bound-
ary conditionBcge(x) - n=0 for all x € Q7L . This condition states that at a sufficiently
distant downstream location the solutidénis independent of downstream position (i.e.,
dd/ax =0).

The solution was implemented using a three-dimensional version of the finite elem
analysis tool (FEAT) [2]. The calculations used a low spatial resolution to provide sufficie
computational evidence of the efficiency of the method. Namely, we take-threction
resolutionhy to be 8021, andhy =h, ~40/12, measured at the diameter@j. As ex-
pected, calculations with a finer grid produced similar results to the ones shown here
were substantially more expensive. The numerical integration associated with evaluatic
the variational integrals in (2.11) is done using a Hammer and Stroud cubature formula
is accurate up to polynomials of order 5. The partitigim combination with the presented
finite element and high-order numerical integration yields a system m@atnigpresenting
the system (2.11) with low condition number. (A lower order integration scheme yield
matrices with higher condition numbers.)

The discrete weakly harmonic solution to (2.11) must be symmetric. The fieldlines
computed using an Euler integration routine with adaptive stepsize. The result is she
in Fig. 3 which represents the— z view of the computed fieldlines. One of the impor-
tant tests of the solutiody, is to check if the fieldlines corresponding Yod, which
originate in a plane stay in this plane. The non-conforming approximation allows for
lot of freedom in this sense. The fieldlines stay within a rangg ©f+0.05 except for
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FIG.3. Thefieldlines given by the computed solutigrd,, in thex — z plane. The outer heavy line represents
the magnetopause location.
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FIG. 4. The fieldlines corresponding to the dipole field tilted by .35

the fieldlines that pass extremely close to the singularit3dnThis means that lateral
approximation error is about 0.1% which is well beyondyhgirection resolutiory, ~ 3%.
The lateral numerical stability seems to be a consequence of the point-wise harmoni
of the spatial approximation. We also computed solutions using a conforming eleme
but solutions of similar accuracy to the non-conforming element proved more difficult
achieve.

3.2. Calculations with Nonzero Tilt

When the dipole tilt angle is nonzero we have
/ Bs-ndS#£0 (3.1)
0Qmp

in Eq. (2.13), resulting in a nonzero value for the normal componedtan,. in (2.3).

An example of a magnetic field configuration where the dipole field is tilted Byi35
shown in Fig. 4. A three-dimensional perspective plot is shown in Fig. 5. Note that f
nonzero tilt the Hilmer—\oigt magnetic field model also displaces the tail field off th
X — y-plane. In both figures the heavy lines denote the location of the magnetopause.

3.3. Calculations with a Non-axisymmetric Magnetopause

A further application of our discrete model is the computation of a configuration whe
the magnetopause shape is no longer axisymmetric. In this case, the methods descrik
the previous section are the same with the exception that(@®ag_ ) becomes the cross-
sectional area o§Q2taL . Pressure balance considerations indicate that the magnetopa
should be indented in a region where the magnetic field is a minimum (the cusp); suct
indentation has been modeled and is shown in Figure 6. The resulting field line configura
is shown in Figs. 7 and 8. Figure 8 shows thatyhextent has been compressed.
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FIG. 5. Three-dimensional plot of the final field configuration for the tilted dipole field. The heavy line
illustrate the location of the magnetopause.

4. SUMMARY AND CONCLUSIONS

We have used a hon-conforming finite-element method to generate a discrete magr
spheric field model. This type of technique is a generalization and extension of previ
work with a variety of possible applications in magnetospheric modeling. The nume
cal calculations indicate that non-conforming finite elements can be successfully use

FIG. 6. Grid configuration for the case of a non-axisymmetric magnetopause.
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FIG. 7. Fieldline plots as viewed in the — z plane for the case of a non-axisymmetric magnetopause; th
indentations were placed near the local minimum in the magnetic field, the location of which is asymmetric v
respect ta. The outer-heavy line represents the magnetopause location.

approximate continuous quantities. The resulting method presented in this paper prov:
be robust and to a large extent independent of the underlying unstructured grid. The I
harmonicity of the finite elements used in our calculations proves to be useful in maintain
the symmetry of the solution even close to the singularity.

FIG. 8. Fieldline plots as viewed in a three-dimensional perspective plot for the case of a non-axisymme
magnetopause. The outer-heavy line represents the magnetopause location. The indentations are place
minima in the internal magnetic field.
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Our discrete method can be used to extend and generalize empirically based mag

field [21] and theoretical models [18] by allowing arbitrary magnetopause shapes to
used in calculations. The results presented in this paper provide evidence that possible

of

continuity does not play an important role when the approximated field quantities

smooth. This observation leads us to believe that the non-conforming finite element met
described in this work will be a valuable tool for the approximation of the MHD equatior
that contain mixture of difficulties such as discontinuities, and divergence-free as w
as smooth field quantities. The application of a spatially non-conforming approximati
using finite elements provides a simple tool for simultaneous treatment of the difficult
mentioned above.

10.

11.
12.

13.

14.

15.

16.

17.

18.

19.

REFERENCES

. 1. 1. Alekseev and V. P. Shabansky, A model of a magnetic field in the geomagnetodtlhast, Space Sci.
20, 117 (1972).

. H. Blum, J. Harig, and S. Muller, FEAT: Finite element analysis tools, release 1.0, user manual preprint -
University of Heidelberg, January 1990.

. S. Chapman and V. C. A. Ferraro, A new theory of magnetic stddaisire 126, 129 (1930).

. K. Eriksson, D. Estep, P. Hansbo, and C. John€amputational Differential Equation&ambridge Univ.
Press, Cambridge, UK, 1996).

. R. V. Hilmer and G.-H. Woigt, A magnetospheric magnetic field model with flexible current systems driv
by independent physical parametelsiGeophys. Re§1995).

. P. Klowgek and M. Luskin, The computations of the dynamics of the Martensitic deform&amjnuum
Mech. Thermodyr6 (1994).

. P. Klowgek and M. Luskin, Computational modeling of the Martensitic transformation with surface enerc
Math. Comput. ModeR0(10/11), 101 (1994).

. P.Klowek, B. Li, and M. Luskin, Non-conforming finite element approximation of the microstrudiath.
Comp.65(215) (1996).

. D. K. Koitchev, M. S. Kaschiev, and M. D. Kartelev, Finite element numerical modeling of stationary tw:

dimensional magnetosphere with defined boundhr@omput. Physl19 220 (1995).

M. D. Kartelev, M. S. Kaschiev, and D. K. Koitchev, Simplified 3D magnetospheric fleomput. Phys.

in press.

P. Moon and D. E. Spencéigld Theory HandbookSpringer-Verlag, New York/Berlin, 1988).

R. Rannacher and S. Turek, Simple non-conforming quadrilateral Stokes eldlert. Methods Partial

Differential Equations8 (1992).

G. L. Siscoe, The magnetospheric boundarhgsics of Space Plasmaslited by T. Chang, G. B. Crew,

and J. R. Jasperse (Scientific Publishers, Cambridge, MA, 1988), p. 3.

J. Shue, J. K. Chao, H. C. Fu, C. T. Russell, P. Song. K. K. Khurana, and H. I. Singer, A new functional fc

to study the solar wind control of the magnetopause size and shapepphys. Re402, 9497 (1997).

D. P. Stern, Parabolic harmonics in magnetospheric modeling: The main dipole and the ring curt

J. Geophys. Re90(13), 10,851 (1985).

M. Schulz and M. C. McNab, Source-surface model of the magnetospgbeophys. Res. Letl4, 182

(2987).

F. R. Toffoletto and T. W. Hill, Mapping of the solar wind electric field to the Earth’s polar dag@eophys.

Res.94, 329 (1989).

F. R. Toffoletto and T. W. Hill, A non-singular model of the open magnetospie@gophys. Re88, 1339

(1993).

F. R. Toffoletto, R. V. Hilmer, T. W. Hill, and G. H. Voigt, Solution of the Chapman—Ferraro problem with a

arbitrary magnetopaus&eophys. Res. Le®1, 7 (1994).



560 KLOUCEK AND TOFFOLETTO

20. N. A. Tsyganenko, A solution of the Chapman-Ferraro problem for an ellipsoidal magnetdpianss,
Space Sci37, 1037 (1989).

21. N. A. Tsyganenko, Modeling the Earth’'s magnetospheric magnetic field confined within a realistic mag
topause,). Geophys. Re400, 5599 (1995).

22. G.-H. \Voigt, A three dimensional, analytical magnetospheric model with defined magnetdpabsephys.
38(1972).

23. G. H. \oigt, Magnetospheric equilibrium configurations and slow adiabatic convecti@plan Wind-
Magnetosphere Couplingdited by Y. Kamide and J. A. Slavin (Terra Scientific, Tokyo, 1986), p. 233.

24. G.-H. Voigt, Amathematical magnetospheric field model with independent physical paraPletees, Space
Sci.1, 29 (1981).



	1. INTRODUCTION
	2. THE FINITE ELEMENT SOLUTION OF THE CHAPMAN–FERRARO PROBLEM
	FIG. 1.
	FIG. 2.

	3. RESULTS
	FIG. 3.
	FIG. 4.
	FIG. 5.
	FIG. 6.
	FIG. 7.
	FIG. 8.

	4. SUMMARY AND CONCLUSIONS
	REFERENCES

